A carbon capture and sequestration/storage (CCS) system is designed to remove CO₂ at the source of emission, such as a coal or natural gas plant, or from the environment. The CO₂ can be stored in a sealed underground chamber or used for another purpose. Currently about 40 million tons of CO₂ are captured each year, about 0.1% of total emissions 1.
For industrial heat and process emissions from major commodities, CCS may be the only economically viable tool to reduce emissions by more than 30% 2.
We estimate the following costs of carbon capture from various industrial sources.
Seawater may also be a promising venue for extracting carbon dioxide 13, though reliable potential costs estimates are limited. Recent analysis suggests that the CO₂ abatement cost of synthetic diesel from seawater may range from $373 to $717 per ton 14.
A major determinant in the monetary and energy costs of CO₂ capture is concentration, with lower costs from higher concentrations. The following are estimates of primary energy requires to capture a ton of CO₂ from various sources.
While industrial sources of carbon tend to be cheaper than diffuse sources such as direct air capture, only limited amounts of them are available, and fossil fuel-based sources in particular will hopefully be phased out eventually. Following are estimates of how much carbon will be available at midcentury from non-fossil sources.
Most captured CO₂ today is used for enhanced oil recovery, with most of the remainder stored geologically.
A barrel of oil releases about 500 kg of CO₂, and if CO₂ enhanced oil recovery is used, about 300-600 kg CO₂ are injected into the well 19.
For the industrial CO2 market more broadly, the dominant uses are urea for fertilizer and enhanced oil recovery. The world market of 230 million tons of industrial CO2 is less than 1% of world emissions of about 40 billion tons annually as of 2022.
Potential future uses of captured CO₂ include methanol, hydrocarbons, methane, mineralization into building materials, working fluids for coal and geothermal power plants, fertilizing plant growth in greenhouses 21, feedstock for the chemical industry, and several niche industrial uses 22, 23.
If CO₂ is captured from fossil fuels or cement, and then used to produce synthetic fuels, the overall process may have lower emissions than the conventional alternative, but it is not a true low-carbon process. Rather, in this scenario, each molecule of CO₂ is emitted over two processes rather than one.
Enhanced oil recovery, also known as enhanced oil extraction or tertiary recovery, is a means of injecting heat, chemicals, or a high pressure gas, often carbon dioxide, into an oil well to increase production. Applied after primary (without additional injection) and secondary (water flooding), EOR works by mixing the injected fluid with the oil, thereby increasing the ease of recovery 24. The sources of injection for EOR are estimated as follows.
As of 2019, it was estimated that 70% of CO2 for EOR was sourced from natural geologic deposits. Such EOR provides no carbon sequestration benefit 26. When CO2 is captured from an industrial source, it is important to credit the carbon savings to either the source of capture, or to the oil well, but not to both 26.
As of 2018, about 2% of oil was produced via EOR, and lower prices and competition with other emerging production technologies had diminished interest in EOR 27. The International Energy Agency has estimated that EOR has the potential to sequester 60-240 billion tons of CO2 from 2015 to 2050, or 1.7 to 6.9 billion tons per year over that period 28. If the source of CO2 is from the atmosphere or from another industrial process, then each captured ton of CO2 used for EOR will reduce emissions on net by 0.63 to 0.79 tons, taking into account leakage and the effect of increased oil consumption overall 28.
The leakage rate of carbon dioxide injected into oil wells has been estimated at less than 1% over 1000 years 24, but this requires that the well is properly sealed after production has ceased 29. Induced seimicity has been observed as a result of EOR, though this can be managed by controlling the rate of injection 30.
Direct air capture (DAC) refers to a system that captures and removes carbon dioxide from the ambient atmosphere, rather than a concentrated industrial waste stream. The International Energy envisions that DAC will remove 980 million tons of CO2 per year by 2050, compared to just 0.01 million tons per year now 31. The two leading technologies are liquid solvent DAC (L-DAC) and solid sorbent DAC (S-DAC). Following are estimates of the resources required for 1 billion tons of DAC per year, about 2.5% of current emissions.
Resource | 1 billion tons L-DAC | 1 billion tons S-DAC | Present annual consumption |
---|---|---|---|
Land Use | 400 km² | 1200-1700 km² | 149 million km² (Earth's land area) |
Water | 50 billion tons | 0.2-2 billion tons | 4600 billion tons |
Energy | 5.5-8.8 exajoules | 7.2-9.5 EJ | 600 EJ |
Life cycle greenhouse gas emissions | 100-400 million tons CO₂ | 30-91 million tons | 40 billion tons |
Cost | Up to $340 billion | Up to $540 billion | World GDP about $85 trillion in 2020 |
S-DAC can operate with lower temperature heat, enabling it to use geothermal or solar thermal energy. L-DAC requires high temperature heat.
If an L-DAC system had to desalinate its own water usage, it would add $3.50 - $9.50/ton CO₂ to the cost of carbon removal 31. It is possible to run a DAC device intermittently on renewable electricity as a load balancing strategy, but this would further raise the cost 31.
It is estimated that the world could store 8,000 to 55,000 billion tons of CO2, the equivalent of 200-1275 years of emissions at current rates 31. In the United States, it is estimated that over half of onshore storage could be developed at less than $10/ton CO2, while more than half of offshore storage could be developed at less than $35/ton 31. Carbon leakage is estimated at less than 0.01%, slow enough for CCS to be secure as a mitigation solution 32.
Global CCS Institute. "The Global Status of CCS". 2018. ↩ ↩2
Organization for Economic Cooperation and Development, International Energy Agency. "CCS 2014: What lies in store for CCS?". 2014. ↩
Folger, P. "Carbon Capture: A Technology Assessment". Congressional Research Service. July 2010. ↩
International Energy Agency. "Technology Roadmap - Carbon Capture and Storage, 2013 Edition". ↩
International Energy Agency. "Transforming Industry through CCUS". May 2019. ↩
Gillingham, K., Stock, J. "The Cost of Reducing Greenhouse Gas Emissions". Journal of Economic Perspectives 32(4), pp. 53-72. November 2018. ↩
Hardisty, P., Sivapalan, M., Brooks, P. "The Environmental and Economic Sustainability of Carbon Capture and Storage". Int J Environ Res Public Health 8(5), pp. 1460-1477. May 2011. ↩
Hu. B,. Zhai, H. "The cost of carbon capture and storage for coal-fired power plants in China". International Journal of Greenhouse Gas Control 65, pp. 23-31. 2017. ↩
Rubin, E., Davison, J., Herzog, H. "The cost of CO₂ capture and storage". International Journal of Greenhouse Gas Control 40, pp. 378-400. September 2015. ↩ ↩2
Budinis, S., Krevor, S., Mac Dowell, M,. Brandon, N., Hawkes, A. "An assessment of CCS costs, barriers and potential". Energy Strategy Reviews 22, pp. 61-81. November 2018. ↩
Fasihi, M., Efimova, O., Breyer, C. "Techno-economic assessment of CO₂ direct air capture plants". Journal of Cleaner Production 224, pp. 957-980. July 2019. ↩
IPCC. "Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change". [Edenhofer, O., R. Pichs-Madruga, Y. Sokona, E. Farahani, S. Kadner, K. Seyboth, A. Adler, I. Baum, S. Brunner, P. Eickemeier, B. Kriemann, J. Savolainen, S. Schlömer, C. von Stechow, T. Zwickel and J.C. Minx (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA. 2014. ↩
Willauer, H., Hardy, D., Schultz, K., Williams, F. "The feasibility and current estimated capital costs of producing jet fuel at sea using carbon dioxide and hydrogen". Journal of Renewable and Sustainable Energy 4. May 2012. ↩
Eisaman M., Rivest, J., Karnitz, S., de Lannoy, C., Jose, A., DeVaul, R., Hannun, K. "Indirect ocean capture of atmospheric CO2: Part II. Understanding the cost of negative emissions". International Journal of Greenhouse Gas Control 70, pp. 254-261. March 2018. ↩
Malins, C. "What role is there for electrofuel technologies in European transport’s low carbon future?". Cerulogy. November 2017. ↩
von der Assen, N., Müller, L., Steingrube, A., Voll, P., Bardow, A. "Selecting CO₂ Sources for CO2 Utilization by Environmental-Merit-Order Curves". Environmental Science & Technology 50(3), pp. 1093-1101. January 2016. ↩
Building Energy Codes Program. "Prototype Building Models High-rise Apartment". Building Technologies Office, Office of Energy Efficiency and Renewable Energy, U. S. Department of Energy. April 2011. ↩
IRENA and Methanol Institute. "Innovation Outlook : Renewable Methanol". International Renewable Energy Agency, Abu Dhabi. January 2021. ↩
McGlade, C. "Commentary: Can CO2-EOR really provide carbon-negative oil?". International Energy Agency. April 2019. ↩
International Energy Agency. "Putting CO2 to Use". September 2019. ↩
Bao, J., Lu, W., Zhao, J., Bi, X. "Greenhouses for CO₂ sequestration from atmosphere". Carbon Resources Conversion 1(2), pp. 183-190. August 2018. ↩
International Energy Agency. "Carbon capture, utilisation and storage". Accessed October 1, 2019. ↩
Leung, D., Caramanna, G., Maroto-Valer, M. "An overview of current status of carbon dioxide capture and storage technologies". Renewable and Sustainable Energy Systems 39, pp. 426-443. November 2014. ↩
Duda, J. R., Yost, A. B., Long, R. Dehoratiis, G., Ogunsola, O. "Carbon Dioxide Enhanced Oil Recovery". National Energy Technology Laboratory, U.S. Department of Energy. March 2010. ↩ ↩2
International Energy Agency. "Number of EOR projects in operation globally, 1971-2017". November 2018. ↩
McGlade, C. "Can CO2-EOR really provide carbon-negative oil?". International Energy Agency. April 2019. ↩ ↩2
McGlade, C., Sondak, G., Han, M. "Whatever happened to enhanced oil recovery?". International Energy Agency. November 2018. ↩
International Energy Agency. "Storing CO2 through Enhanced Oil Recovery". November 2015. ↩ ↩2
Ide, S.T., Friedmann, S.J., Herzog, H.J. "CO2 leakage through existing wells: current technology and regulations". In 8th International Conference on Greenhouse Gas Control Technologies (Vol. 1, pp. 19-33). June 2006. ↩
National Petroleum Council. Meeting the Dual Challenge: A Roadmap to At-Scale Deployment of Carbon Capture, Use, and Storage. Chapter 8: CO2 Enhanced Oil Recovery. March 2021. ↩
International Energy Agency. "Direct Air Capture: A key technology for net zero". April 2022. ↩ ↩2 ↩3 ↩4 ↩5 ↩6
Miocic, J. M., Gilfillan, S. M. V., Frank, N., Schroeder-Ritzrau, A., Burnside, N. M., Haszeldine, R. S. "420,000 year assessment of fault leakage rates shows geological carbon storage is secure". Scientific Reports 9: 769. January 2019. ↩